Immature neocortical neurons exist as extensive syncitial networks linked by dendrodendritic electrical connections.
نویسنده
چکیده
The properties of immature cortex that may enable it to exhibit large-scale wavelike activity during a brief critical developmental period were investigated by imaging neuronal calcium signals in neonatal cortical slices under conditions of artificially enhanced excitability, conditions that produce a more frequent and robust version of the naturally occurring waves. Using pharmacological manipulation to probe the underlying mechanisms, I show that waves can propagate effectively when excitatory synaptic transmission is blocked. In contrast, propagation is very sensitive to reductions in gap junctional communication. In the barrel field cortex wave propagation is affected by the underlying cytoarchitecture in a way that is consistent with a role for dendrodendritic gap junctions. The ability of cortex to sustain wave activity ends around postnatal day 12, precisely when a major reduction in neuronal gap junctions takes place in cortex. These results suggest that in immature cortex gap junctions link neurons into extensive networks that may allow electrical activity to spread over long distances.
منابع مشابه
Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions
Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity pa...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملDevelopmental Changes in Electrophysiological Properties and a Transition from Electrical to Chemical Coupling between Excitatory Layer 4 Neurons in the Rat Barrel Cortex
During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, whic...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملSynaptogenesis of electrical and GABAergic synapses of fast-spiking inhibitory neurons in the neocortex.
Parvalbumin-expressing fast-spiking (FS) cells are interconnected via GABAergic and electrical synapses and represent a major class of inhibitory interneurons in the neocortex. Synaptic connections among FS cells are critical for regulating network oscillations in the mature neocortex. However, it is unclear whether synaptic connections among FS interneurons also play a central role in the gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2001